中国学术文献网络出版总库

手机也能上知网 上手机知网,随时随地畅游知识海洋!请手机访问:wap.cnki.net

手机知网客户端
知识出版物超市平台推广
辞书大典广告

节点文献

小学数学解决问题策略

 

【作者】 李小兵

【机构】 四川省宜宾市江安县阳春镇中心小学校

【摘要】

【关键词】
【正文】  解决问题是传统教学中的的应用题教学,源于学生的生活实际,又回到学生的生活中;是学生在学习中遇到困难,找到一条绕过障碍的出路,达到可以解决问题的答案。解决问题有利于发展学生的创新精神和解决问题的实践能力,能让小学生用原有的知识,技能和方法迁移到课程情景中解决新的问题,从而培养学生解决问题的能力。
  一、小学生数学问题解决的基本策略
  1.作图解决问题的策略
  线段图在解答分数问题时的作用是显而易见,教过小学高年级数学的教师都会对运用线段图来解答分数问题情有独钟,但线段图在解决其他类型的问题同样也会发挥其直观、形象作用。如:1、哥哥像妹妹现在这样大的时候,妹妹是9岁;妹妹到哥哥现在这样大时,哥哥是24岁。兄妹俩人现在各是多少岁?
  这题看上去似乎条件不足,小学生很难弄清楚其中哥哥和妹妹之间的年龄关系。通过线段图来帮助理解,找出之间的关系。
  分析:妹妹现年-9岁=哥哥现年-妹妹现年=24-哥哥现年
  最短的线段是指妹妹9岁,最长的线段是哥哥24岁
  24-9=15(岁)15÷3=5(岁)
  哥哥现在的岁数:24-5=19(岁)妹妹现在的岁数:9+5=14(岁)
  2.列举信息的策略
  平面上有16个点,点与点之间横向与纵向的距离都是1厘米,求通过这些点能够连出多少个正方形?
  分析:(1)边长为1厘米的正方形有9个;
  (2)边长为2厘米的正方形有4个;
  (3)边长为3厘米的正方形有1个;
  通过这些点能够连出14个正方形。枚举探求是指通过举例发现规律从而解决问题。
  枚举筛选法是指解某些数学题时,有时要根据题目的一部分条件,先把可能的答案一一列举出来,然后再根据另一部分条件检验,筛选出题目的答案。数学问题的解决过程既是一种不断地变更问题的过程,也是一种不断试错与筛选的过程。
  3.动手做的策略
  这是一种通过探索性动手操作而获得问题解决的策略。在学习空间与图形这一块内容时,动手做的策略就会显得很有效。如:在讲授认识平行四边形这一新课时,教学目标就是要让学生能够自己动手操作探索出平行四边形的基本特征两条对边互相平行且相等。需要注意的是,在学生动手之前,教师不要给太多的暗示,要把实际操作策略的选择权留给学生,让学生在自主探索中实现操作策略的多样化。这一课时的例1教师让学生自己想办法做出一个平行四边形行,在小组里交流。学生的动手做的方法各不相同,有人用小棒摆,有人在钉子板上围,有人在方格纸上画,有人沿着直尺画,还有人直接用小剪刀剪的等等
  4.尝试的策略
  美国著名心理学家桑代克曾把人和动物的学习定义为刺激与反应之间的联结,联结是通过盲目尝试、逐步减少错误而形成的,即通过试误形成的。桑代克的尝试——错误说早在一百年前就提出来了,也被大多数人所认同。这里的尝试策略也就是多种方法的“试误”过程。不同的学生有着不同的数学水平,因此,要允许学生以不同的方式去学习数学。教师所要做的,就是要充分尊重每一个学生的个体差异,让学生采用尝试的策略去解决问题。
  二、重视培养学生从情境图中捕获数学信息的能力
  实验教材中“解决问题”的出现改变了过去应用题呈现形式单一、结构呆板的情况,以情景、对话等方式出现,例题和习题安排形式多样,如图画、卡通、表格、文字等。这样创设出的情景能培养学生学习的兴趣,激发学生探索问题的激情。但我发现有些教师在教学中总是把教材所提供的情境图与小精灵的对话连成一道例题,把解决问题简化成了解应用题,究其原因有的是因为学生收集处理信息的能力不够强,学生不能正确判断条件的先后顺序,不能正确处理情境中的信息,如果让学生自主探究,怕完不成教学任务,因此只能又回到单一的应用题教学中。我认为课堂教学,如同和学生一起经历一次次难忘的旅程,如果教师只为了引导学生到达“终点站”,那么就会忽略旅途中的“美景”,也就是说,如果我们省去了让学生收集信息发现问题的过程,不仅有违课改精神,而且不利于学生思维能力的发展以及创新能力的培养,所以,我们应充分利用情境图给学生展示才能的空间,让学生全面参与知识的形成过程,主动参与分析问题,知道分析数量关系在解决问题过程中的重要作用,是解决问题的根本。因此教师在教学和复习时,要让学生理解和掌握“解决问题”的各种呈现方式,培养学生善于从各种生活情境中捕捉数学信息、寻求数学问题、分析数量关系、处理信息的能力,让学生能够利用已有的数学知识解决数学问题,同时学会概括总结解决问题的思路和方法。
  三、引导学生概括、领悟常见的数学思想 
  小学高年级的学生抽象逻辑思维得到了一定的发展,他们有一定归类和上升为数学思想的能力。数学思想较之数学基础知识,有更高的层次和地位。它蕴涵在数学知识发生、发展和应用的过程中,它是一种数学意识,属于思维的范畴,用以对数学问题的认识、处理和解决。数学方法是数学思想的具体体现,具有模式化与可操作性的特征,可以作为解题的具体手段。只有对数学思想与方法概括了,才能在分析和解决问题时得心应手;只有领悟了数学思想与方法,书本的、别人的知识技巧才会变成自己的能力。像小学数学经常会出现的行程问题,学生如果掌握了数形结合的思想方法,解决的时候就会得心应手。
  四、发挥学生的主体地位,注重学生的思想汇报
  新课标指出,教学活动是师生积极参与、交往互动、共同发展的过程。有效的数学教学活动是学生学教师教的统一,学生是数学学习的主体,教师是数学学习的组织者、引导者与合作者。数学的教学不仅是为解决问题而解决问题,完成单一的教学目标,更应注重学生的发展。教师在课堂教学中,应充分注重学生情感态度与价值观的形成,进而促进学生对数学学习的热情与参与课堂的积极性。
  学生对解决问题有了初步结论,教师可大胆将课堂交给学生,让学生汇报所想与得出的结论,生与生之间互动纠错、教师适时参与,将结论逐步完善,让问题得以解决。
  • 【发布时间】2018/10/10 14:18:37
  • 【点击频次】268